a2 United States Patent

US009225780B2

(10) Patent No.: US 9,225,780 B2

Braam et al. 45) Date of Patent: Dec. 29, 2015
(54) DATA INTEGRITY IN A NETWORKED (56) References Cited
STORAGE SYSTEM
U.S. PATENT DOCUMENTS
(75) Inventors: Peter J. Braam, Nederland, CO (US); 6,931,576 B2* 82005 Morrison et al. 714/54
Nathaniel Rutman, Portland, OR (US) 6,964,008 Bl * 11/2005 Van Meter, III 714/807
2008/0307122 Al* 12/2008 Butleretal. 710/23
. . .. 2011/0029847 Al* 2/2011 Goldenberg et al. ... 714/801
(73) Assignee: Xyratex Technology Limited, Havant 2011/0283085 Al* 11/2011 Dilgeret al. ccooocoeorenr... 711216
(GB) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Holt, Keith; “End-to-End Data Protection Justification”; T10 Tech-
patent is extended or adjusted under 35 nical Committee document # T10/03-224r0; Jul. 1, 2003; p. 1.*
U.S.C. 154(b) by 0 days Dilger et al.; “End to End Data Integrity Design”; Jun. 15, 2009; Sun
T y s Microsystems.*
(21) Appl. No.: 13/404,618 * cited by examiner
. Primary Examiner — Alex Gofman
(22) Filed: Feb. 24, 2012 Assistant Examiner — Umar Mian
(74) Attorney, Agent, or Firm — Hall Estill Attorneys at Law
(65) Prior Publication Data
(57) ABSTRACT
US 2013/0226887 Al Aug. 29,2013 A method of writing data to a distributed file system including
a file system client, a server and a storage resource target,
(51) Int.ClL includes generating, on the client, a write request including a
GOG6F 11/08 (2006.01) byte stream to be written to the storage resource target; for-
GO6F 11/00 (2006.01) matting, on the client, the byte stream into sectors in accor-
GOG6F 17/30 (2006.01) dance with the T10 protocol, the sectors including a data field
HO4L 29/08 (2006.01) and a protection information field, the protection information
GOG6F 11/10 (2006.01) field including a guard field, an application field and a refer-
GO6F 3/06 (2006.01) ence field; computing, on the client, checksum data for the
(52) U.S.CL guard field; sending, across a network, the data and the pro-
CPC HO4L 6771097 (2013.01); GO6F 3/067 tection information to the server; verifying, in T10-capable
(2013.01); GO6F 3/0619 (2013.01); GO6F hardware on the server, the checksum data for the guard field;
11/1004 (2013.01); GO6F 17/30203 (2013.01) verifying, on the storage resource target, the checksum data
(58) Field of Classification Search for the guard field; and storing the data on the storage resource

None
See application file for complete search history.

target.

20 Claims, 8 Drawing Sheets

U.S. Patent Dec. 29, 2015 Sheet 1 of 8 US 9,225,780 B2

Fig. 1

108
! 108a
112-N

o
z D
&] p—
| D)
i : :
Ep
?
&

102;1

1
1121

US 9,225,780 B2

Sheet 2 of 8

Dec. 29, 2015

U.S. Patent

~T > o0zl

~—T ~ 811

vZl—_|
Q.MN r»-N Aowey
[
vaH
(44"
woelsAs 9|l
wajsAs Bunesadp
A
ol h 4
S N

suopesjjdde ajemyosg

N——T ™~

9Ll

90} /I\\m‘ll\\ —

}SOH

e

T~

00§

Ly Wi UPL

il

9Ll

)V

O]

uuuuu

e
vvvvvvvvvv

U.S. Patent Dec. 29, 2015 Sheet 4 of 8 US 9,225,780 B2

L
=
o =
oy N /N
g2 < 0
< N S
) /
r 3
oA L
\D
= =
N
o S
‘m
(o]
8 a) LL‘
o
@
a \
al '3
&)
N
&
\ D\\o
&

U.S. Patent

Dec. 29, 2015

Sheet 5 of 8

300 ~— Write request
A
302 ——d Format data
304~ | Calculate GRD
Recompute
306~ GRD
308 Add GRD to
™1 bukIo
v
310—_| Send write
request
312—__| OST receives
bulk 10
314 ~__| OST maps PI
316 ~_| P!to MDRAID
318~ HBAobtains
SG and PI
320 HBA recalculates
GRD
322 N Verify
REF/GRD
Write data

US 9,225,780 B2

Fig. 5

U.S. Patent Dec. 29, 2015 Sheet 6 of 8 US 9,225,780 B2

Read request
v
402~_ OST sets up

buffers

!

MDRAID
request data

'

Verify Pl

'

HBA maps data
408 — verifies GRD

i

MDRAID verify
parity
A

OST sends
data

400~___

404~__]

406 —~—

412 ~_,

\4

Host verifies
GRD

l

416 —~_ Hosé \Sgﬁes

A 4

418 —_| Read data

Fig. 6

US 9,225,780 B2

Sheet 7 of 8

Dec. 29, 2015

U.S. Patent

YA |

1HdV HOldd
[0 soa00s | Luasuia s | 101935 4G 0TS
Mr&.%ﬁm T IO13% 14T D25
7 AMIVECTE 101325 AG 0Z5
—a
L \ PEEEE Joras 34 PRy
m — _
id sajelauab
(" weans g YEH
Bel aouasdejea Ug-2£
Bej uonesijdde 3iG-g{
_ — (uciuod eiep 314q-2 1S Jo D¥D) Bey prend 3G9t
EE} 4ddv | YN BIRp JO 52IAQ Z LS
[% GiE | 4% ZI% 3]

US 9,225,780 B2

Sheet 8 of 8

Dec. 29, 2015

U.S. Patent

8 S

14V HOldd
—usu Evam_ w?_m akgg 0335 NG 075
\\ e
FEVEE Jomes kg 07E

m\.) Jm Wmmm wumﬁ_ g ” SRS NG 075
: e
| D wody |
w _ :
HUEZTE 103 4G 025
N, \ < H

w 14 9344 & “ M 01335 TAG Z1S

{ wakyg . ﬁ wels a3g

id
sajgioush sp
Jo dde Jasn

|

US 9,225,780 B2

1

DATA INTEGRITY IN A NETWORKED
STORAGE SYSTEM

BACKGROUND OF THE INVENTION

1. Field

The primary field of use for the present method and appa-
ratus is in the field of networked storage systems. Such sys-
tems may, non-exhaustively, comprise distributed file sys-
tems, cloud networks, remote storage or other network-
addressable storage arrangements. The present invention
relates, more specifically, to a method of, and apparatus for,
end to end data integrity. In particular, the present invention
relates to a method of, and apparatus for, end to end data
integrity using the T10 protocol.

2. Description of Related Art

Data integrity is a core requirement for a reliable storage
system. The ability to prevent and, if necessary, identify and
correct data errors and corruptions is essential for operation
of' storage systems ranging from a simple hard disk drive up to
large mainframe storage arrays.

A typical hard disk drive comprises a number of address-
able units, known as sectors. A sector is the smallest exter-
nally addressable portion of a hard disk drive. Each sector
typically comprises 512 bytes of usable data. However, recent
developments under the general term “advanced format™ sec-
tors enable support of sector sizes up to 4 k bytes. When data
is written to a hard disk drive, it is usually written as a block
of data, which comprises a plurality of contiguous sectors.

A hard disk drive is an electro-mechanical device which
may be prone to errors and or damage. Therefore, it is impor-
tant to detect and correct errors which occur on the hard disk
drive during use. Commonly, hard disk drives set aside a
portion of the available storage in each sector for the storage
of error correcting codes (ECCs). This data is also known as
protection information. The ECC can be used to detect cor-
rupted or damaged data and, in many cases, such errors are
recoverable through use of the ECC. However, for many cases
such as enterprise storage architectures, the risks of such
errors occurring are required to be reduced further.

One approach to improve the reliability of a hard disk drive
storage system is to employ redundant arrays of inexpensive
disk (RAID). Indeed, RAID arrays are the primary storage
architecture for large, networked computer storage systems.

The RAID architecture was first disclosed in “A Case for
Redundant Arrays of Inexpensive Disks (RAID)”, Patterson,
Gibson, and Katz (University of California, Berkeley). RAID
architecture combines multiple small, inexpensive disk drives
into an array of disk drives that yields performance exceeding
that of a single large drive.

There are a number of different RAID architectures, des-
ignated as RAID-1 through RAID-6. Each architecture offers
disk fault-tolerance and offers different trade-offs in terms of
features and performance. RAID controllers provide data
integrity through redundant data mechanisms, high speed
through streamlined algorithms, and accessibility to stored
data for users and administrators.

RAID architecture provides data redundancy in two basic
forms: mirroring (RAID 1) and parity (RAID 3, 4, 5 and 6).
The implementation of mirroring in RAID 1 architectures
involves creating an identical image of the data on a primary
disk on a secondary disk. RAID 3, 4, 5, or 6 architectures
generally utilise three or more disks of identical capacity. In
these architectures, two or more of the disks are utilised for
reading/writing of data and one or more of the disks store
parity information. Data interleaving across the disks is usu-
ally in the form of data “striping” in which the data to be

10

15

20

25

30

35

40

45

50

55

60

65

2

stored is broken down into blocks called “stripe units”. The
“stripe units” are then distributed across the disks.

Therefore, should one of the disks in a RAID group fail or
become corrupted, the missing data can be recreated from the
data on the other disks. The data may be reconstructed
through the use of the redundant “stripe units” stored on the
remaining disks. However, RAID architectures utilising par-
ity configurations need to generate and write parity informa-
tion during a write operation. This may reduce the perfor-
mance of the system.

For a system with local storage, the American National
Standards Institute’s (ANSI) T10-DIF (Data Integrity Field)
specification format enables data protection. The T10-DIF
format specifies data to be written in blocks or sectors of 520
bytes. This is shown schematically in FIG. 7. The 8 additional
bytes in the data integrity field provide additional protection
information (PI), some of which comprises a checksum thatis
stored on the storage device together with the data. The data
integrity field is checked on every read and/or write of each
sector to verify data integrity between system memory and a
host bus adapter (HBA). This enables detection and identifi-
cation of data corruption or errors. T10-DIF is hardware-
based, where an /O controller adds the protection informa-
tion (PI) that is then verified by the storage device hardware.
Therefore, T10-DIF is only suitable for localised hardware
because it cannot protect across a network.

ANSI T10-DIF provides three types of data protection:
logical block guard (GRD) for comparing the actual data
written to disk, a logical block application tag (APP) and a
logical block reference tag (REF) to ensure writing to the
correct virtual block. The logical block application tag is not
reserved for a specific purpose.

In general, the operation of T10-DIF in a local storage
system is shown in FIG. 7. A byte stream is generated by a
client application. This is then formatted by an Operating
System (OS) into a byte sector of 512 bytes. The 1/0 control-
ler (or host bus adapter) then appends 8-bit PI to the 512 byte
sector to form a 520 byte sector. This is then sent via a storage
area network (SAN) to the RAID array and eventually to the
disk drive where the data is written as a 520 byte sector. The
PI is checked at each of these stages.

A further extension to the T10-DIF format is the T-10 DIX
(data integrity extension) format which enables 8 bytes of
extension information to enable PI potentially to be piped
from the client application directly to the storage device.

This process is illustrated in FIG. 8. The same data format
ot 520 byte sector is used in T10-DIX as for T10-DIF. How-
ever, in this instance, 8 bytes of PI is generated by the user
application or OS along with the 512 byte sector. The 8 byte
P1 is then checked at every stage in the transfer of data to the
storage disk drive.

Data protection measures such as RAID, T10-DIF and
T10-DIX are useful to prevent data corruption and errors
occurring locally on a storage system. However, storage solu-
tions are now generally accessible across networks. For
example, distributed file systems are now common. A distrib-
uted file system (or network file system) is a file system that
allows access to files from multiple hosts (or clients) sharing
via a network such as an Ethernet or the internet. This makes
it possible for multiple users on multiple machines to share
files and storage resources. The most common arrangement is
a client-server architecture in which the server provides a
service to requesting hosts.

A commonly used distributed file system is Lustre™. Lus-
treis a parallel distributed file system, generally used for large
scale cluster computing. Lustre file systems are scalable and
are able to support many thousands of clients and multiple

US 9,225,780 B2

3

servers. A Lustre file system generally comprises three units:
a metadata server (MDS), one or more object storage servers
(OSSs) and one or more clients which access the OSSs.

The MDS generally comprises a single metadata target
(MDT) per file system that is operable to store metadata such
as filenames, directories, access permissions, and file layout.
The MDT data is generally stored in a single local disk file
system.

The OSSs store file data on one or more object storage
targets (OSTs). Each OST manages a single local disk file
system. Lustre presents all clients with a unified namespace
for all of the files and data in the file system and allows read
and write access to the files in the file system.

One of the challenges of a distributed file system such as
Lustre is to provide efficient end-to-end data integrity. There-
fore, mechanisms are required to ensure that data sent by a
client node (e.g. client computer or application) is stored on a
respective OST correctly. In other words, it is desirable for
data written by a client application to be verified as correctly
saved on a storage device. This is not possible using tech-
niques such as RAID, T10-DIF and T10-DIX. This is because
these techniques act locally on a server whereas in a network
file system data corruption may occur at other locations, for
example on the client or across the network before the data
arrive at the server.

In order to address this issue, many Lustre systems use an
1/0 checksum which provides “over-the-wire” verification.
The Lustre checksum uses a CRC-32 algorithm to detect
single bit errors and swapped and/or missing bytes. A Lustre
network checksum is generally provided per 1 MB client
remote procedure call (RPC). However, other checksum algo-
rithms may also be used; for example, Adler32 or CRC-32c.

However, whilst the Lustre checksum is able to provide
“over-the-wire” verification of data, these checksums are
only able to provide protection over a network. They cannot
provide protection locally on a server. In addition, the Lustre
checksum algorithm requires a significant amount of compu-
tational resources on the server side to execute the necessary
checksums. This is particularly an issue since the number of
checksums to be calculated scales with the number of clients,
and there are generally considerably more clients (and there-
fore considerably more RPCs to execute) than there are serv-
ers. Consequently, storage system performance can be
affected if the OSS and MDS server hardware is not powerful
enough to handle both the I/O, file system administration and
checksum services concurrently.

Therefore, in summary, the existing T10 DIF format is
operable to provide data integrity locally. In addition, the
network checksum can only provide data integrity over the
wire. Neither of these approaches can provide data integrity
on the client itself, let alone complete end to end data integ-
rity. Furthermore, T10 DIF and network checksums are not
linked together in any way, increasing complexity and com-
putational loads on the servers.

Consequently, to date, known storage systems suffer from
a technical problem that end to end data integrity cannot be
achieved reliably on existing storage systems and without
placing high demand on server resources.

SUMMARY

According to a first aspect of the present invention, there is
provided a method of writing data to a distributed file system
comprising at least one file system client, at least one server
and at least one storage resource target, the method compris-
ing: a) generating, on said client, a write request comprising
a byte stream to be written to said storage resource target; b)

10

15

20

25

30

35

40

45

50

55

60

65

4

formatting, on said client, said byte stream into sectors in
accordance with the T10 protocol, the sectors comprising a
data field and a protection information field, the protection
information field comprising a guard field, an application
field and a reference field; ¢) computing, on said client, check-
sum data for said guard field; d) sending, across a network,
said data and said protection information to said server; e)
verifying, in T10-capable hardware on said server, said
checksum data for said guard field; and f) verifying, on said
storage resource target, said checksum data for said guard
field; and g) storing said data on said storage resource target.

In one embodiment, step b) further comprises formatting
said byte stream into sectors comprising 512 bytes of data and
8 bytes of protection information in accordance with the T10
protocol.

In one embodiment, prior to step d), the method further
comprises: h) said data and protection information is format-
ted into an RPC format.

In one embodiment, said RPC buffer is 1 MB in size.

In one embodiment, step e) is performed by a host bus
adapter.

In one embodiment, the host bus adapter is T10-DIF or
T10-DIX compliant.

In one embodiment, after step c), the method further com-
prises: 1) writing said checksum data to the client kernel; and
j) recomputing said checksum data for said guard field.

In one embodiment, steps a) to ¢) are carried out by a client
application or operating system.

According to a second aspect of the present invention, there
is provided a method of reading data from a distributed file
system comprising at least one client, at least one server and
at least one storage resource target, the method comprising: a)
executing, from said client, a read request for reading of data
from at least one data sector, the or each data sector being in
accordance with the T10 protocol and comprising a data field
and a protection information field, the protection information
field comprising a guard field comprising checksum data, an
application field and a reference field; b) verifying, on said
storage resource target, the protection information associated
with the requested sector or sectors; ¢) verifying, in T10-
capable hardware on said server, the checksum data in said
guard field; d) sending, across a network, said data and said
protection information to said client; e) verifying, on said
client, said checksum data in said guard field; and f) if said
steps of verification are successful, reading the data from the
or each data sector.

In one embodiment, step b) further comprises formatting
said byte stream into sectors comprising 512 bytes of data and
8 bytes of protection information in accordance with the T10
protocol.

In one embodiment, in step d), the method further com-
prises: h) sending said data and protection information in a
RPC format.

In one embodiment, said RPC buffer is 1 MB in size.

In one embodiment, step ¢) is performed by a host bus
adapter.

In one embodiment, the host bus adapter is T10-DIF or
T10-DIX compliant,

In one embodiment, steps e) to g) are carried out by a client
application or operating system.

According to a third aspect of the present invention, there is
provided a distributed file system comprising at least one
client, at least one server and at least one storage resource
target, the distributed file system being configured to carry out
the steps of the first or second aspects.

According to a fourth aspect of the present invention, there
is provided a computer program product executable by a

US 9,225,780 B2

5

programmable processing apparatus, comprising one or more
software portions for performing the steps of the first and/or
second aspects.

According to a fifth aspect of the present invention, there is
provided a computer usable storage medium having a com-
puter program product according to the fourth aspect stored
thereon.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be
described in detail with reference to the accompanying draw-
ings, in which:

FIG. 1 is a schematic diagram of a distributed networked
storage resource;

FIG. 2 is a schematic diagram showing a server of an
embodiment of the present invention forming part of the
distributed networked storage resource of FIG. 1;

FIG. 3 is a schematic diagram of the mapping between
storage sector indices in a RAID 6 arrangement;

FIG. 4 is a schematic diagram of a sector amongst a plu-
rality of sectors in a storage device;

FIG. 5 is a flow diagram showing a write operation accord-
ing to an embodiment of the present invention;

FIG. 6 is a flow diagram showing a read operation accord-
ing to an embodiment of the present invention;

FIG. 7 is a known arrangement for processing T10-DIF
storage requests; and

FIG. 8 is a known arrangement for processing T10-DIX
storage requests.

DETAILED DESCRIPTION

FIG. 1 shows a schematic illustration of a networked stor-
age resource 100 in which the present invention may be used.
The present invention is illustrated with respect to a parallel
distributed file system. However, it is to be appreciated that
such a networked storage resource is only one possible imple-
mentation of a storage resource which may be used with the
present invention.

The present invention is directed to a networked file system
in which the T10-DIF and T10-DIX data integrity protocols
can be extended to achieve end-to-end data integrity across
the network from host application to storage device.

The networked storage resource 100 comprises a distrib-
uted file system. A distributed file system consists of client
102-1to 102-N and servers 104-1 to 104-N nodes, connected
by a network 106. The servers 104 take the form of OSSes.
Client applications, running on client nodes, make storage
requests (which may comprise file storage requests) against
the distributed file system. Some of these calls result in
updates to the file system state.

The distributed networked storage resource comprises a
plurality of hosts 102. The hosts 102 are representative of any
computer systems or terminals that are operable to commu-
nicate over a network. Any number ofhosts 102 or servers 104
may be provided; N hosts 102 and N servers 104 are shown in
FIG. 1, where N is an integer value.

The hosts 102 are connected to a first communication net-
work 106 which couples the hosts 102 to a plurality of servers
104. A metadata server (MDS) 108 is also connected to the
network 106. The MDS 108 comprises local storage 108a.

The communication network 106 may take any suitable
form, and may comprise any form of electronic network that
uses a communication protocol; for example, a local network
such as a LAN or Ethernet, or any other suitable network such
as a mobile network or the internet.

10

15

20

25

30

35

40

45

50

55

60

65

6

The servers 104 are connected through device ports (not
shown) to a second communication network 110, which is
also connected to a plurality of OSTs 112-1 to 112-N in the
form of RAID arrays of storage devices 114. The second
communication network 110 may comprise any suitable type
of storage controller network which is able to connect the
servers 104 to the storage devices 114. The second commu-
nication network 110 may take the form of, for example, a
SCSI network, an iISCSI network or fibre channel.

The servers 104 may comprise any storage controller
devices that process commands from the hosts 102 and, based
on those commands, control the storage devices 114. The
storage devices 114 may take any suitable form; for example,
tape drives, disk drives, non-volatile memory, or solid state
devices.

Although most RAID architectures use hard disk drives as
the main storage devices, it will be clear to the person skilled
in the art that the embodiments described herein apply to any
type of suitable storage device. More than one drive may form
a storage device 114; for example, a RAID array of drives
may form a single storage device 114. The skilled person will
be readily aware that the above features of the present
embodiment could be implemented in a variety of suitable
configurations and arrangements. Additionally, each OST
112 comprising a RAID array of devices 114 appears to the
hosts 102 as a single logical storage unit (LSU) or drive. Any
number of OSTs 112 may be provided; in FIG. 1, N OSTs 112
are shown, where N is any integer value.

As an alternative variation, a RAID array of drives is not
necessarily required. Alternatively, a single T10-DIF disk
drive could function as an OST. Similarly, parity-declustered
RAID (PDRAID) devices could be used, including network-
striped PDRAID. The skilled person would be readily aware
of variations which fall within the scope of the present inven-
tion.

The operation of the servers 104 may be set at the Appli-
cation Programming Interface (API) level. Typically, Origi-
nal Equipment Manufacturers (OEMs) provide RAID net-
works to end clients for network storage. OEMs generally
customise a RAID network and tune the network perfor-
mance through an API.

The servers 104 and OSTs 112 also provide data redun-
dancy. The storage devices 114 comprise RAID controllers
(described with reference to FIG. 2) which provide data integ-
rity through a built-in redundancy which includes data mir-
roring. The storage devices 114 are arranged such that, should
one of the drives in a group forming a RAID array fail or
become corrupted, the missing data can be recreated from the
data on the other drives.

FIG. 2 shows a more detailed schematic diagram of a single
host 102, single server 104 and single OST 112 which may
form the whole or part of the networked storage resource 100.

The host 102 comprises a general purpose computer (PC)
which is operated by a client and which has access to the
storage resource 100. The OSS 104 comprises a software
application layer 116, an operating system 118 and a host bus
adapter (HBA) 120.

The software application layer 116 comprises software
applications including the algorithms and logic necessary for
the initialisation and run-time operation of the server 104. The
software application layer 116 includes software functional
blocks such as a system manager for fault management, task
scheduling and power management. The software application
layer 116 also receives commands from the host 102 (e.g.,
assigning new volumes, read/write commands) and executes
those commands. Commands that cannot be processed (be-

US 9,225,780 B2

7

cause of lack of space available, for example) are returned as
error messages to the client of the host 102.

The operating system 118 utilises an industry-standard
software platform such as, for example, Linux, upon which
the software applications forming part of the software appli-
cation layer 116 can run. The operating system 118 comprises
a Lustre file system 122 which enables the HBA 120 to store
and transfer files to the OST 112 via a RAID controller 126.

The HBA 120 is the physical hardware interface between
the RAID controller 126 and the server 104 that executes the
software applications in the software application layer 116.
The HBA 120 comprises a microprocessor, memory 124, and
all other electronic devices necessary for /O control with the
RAID controller 126 operable to control the storage devices
114 of the OST 112. In this embodiment, the HBA 120
comprises the hardware necessary to utilise the T10 protocol,
i.e the HBA 120 is configured to process the necessary check-
sums for data verification for each 520 byte sector as will be
described below.

The HBA 120 may take any suitable format. However, it is
required that the HBA 120 has T10-DIX type 1 or 2 support
which provides for checking of the GRD and REF fields of
each sector.

Whilst, in FIG. 2, the HBA 120 is shown as part of the
server 104, this need not be so. The skilled person would be
readily aware of alternatives which fall within the scope of the
present invention; for example, the HBA 120 may be remote
from the server 104.

The server 104 is operable to receive storage requests
(which may comprise /O requests) to the Lustre file system
122 from hosts or clients 102 and process said storage
requests to the file system 122. The Lustre file system 122
may comprise any suitable variant of the system and may be
run on the server 104 to provide access to the storage devices
112. Non-exhaustive examples of suitable file systems may
be: NTFS, HFS, ext3 or ext4.

The Lustre file system 122 enables the storage on the OST
112 to be externally visible to the clients 102. Clients refer-
ence file offsets and ranges (or “extents”) presented by the file
system. In order to do so, file system structures on the MDS
108 comprise tables related to device space management.
Such table information includes, for each file onthe OST 112,
a set of device block numbers identifying blocks where file
data is stored and a list of a set of free blocks which do not
hold file data.

The format of the storage devices 114 will now be
described with reference to FIG. 3. FIG. 3 illustrates an
example of a RAID 6 array. However, other arrangements
may be used with the present invention, for example, RAID 5,
RAID 10 or RAID 50.

As shown in FIG. 3, data is stored on the RAID 6 array in
the form of stripe units (also known as RAID chunks). Each
data stripe A, B comprises ten separate stripe units distributed
across the storage devices—stripe A comprises stripes A1-A8
and parity stripe units A, and A. Stripe B comprises stripe
units B1 to B8 and parity stripe unit B, and B, . Therefore, the
stripe units comprising each stripe (A1-A8 or B1-B8 respec-
tively) are distributed across a plurality of disk drives,
together with parity information A,,, A, B, and B, respec-
tively. This provides data redundancy.

The size of a stripe unit can be selected based upon a
number of criteria, depending upon the demands placed upon
the RAID array, e.g. workload patterns or application specific
criteria. Common stripe unit sizes generally range from 16K
up to 256K. In this example, 128K stripe units are used. The
size of each stripe A, B is then determined by the size of each
stripe unit in the stripe multiplied by the number of non-parity

10

15

20

25

30

35

40

45

50

55

60

65

8

data storage devices in the array (which, in this example, is
eight). In this case, if 128K stripe units are used, each RAID
stripe would comprise 8 data stripe units (plus 2 parity stripe
units) and each RAID stripe A, B would be 1 MB wide.

However, the stripe size is not material to the present inven-
tion and the present example is given as a possible implemen-
tation only. Alternative arrangements may be used. Any num-
ber of drives or stripe unit sizes may be used.

Storage on a storage device 114a-j comprises a plurality of
sectors (also known as logical blocks). A sector is the smallest
unit of storage on the storage device 114a-j. A stripe unit will
typically comprise a plurality of sectors.

FIG. 4 shows the format of a sector 200 of a storage device
114a. The sector 200 comprises a data field 202 and a data
integrity field 204. Depending upon the file system used, each
sector 200 may correspond to a logical block.

As setout above, the term “storage device™ in the context of
the following description may refer to a logical drive which is
formed on the RAID array. In this case, a sector refers to a
portion of the logical drive created on the RAID array. The
following embodiment of the present invention is applicable
to any of the above described arrangements.

The term “sector” used herein, whilst described in an
embodiment with particular reference to 520 byte sector sizes
as specified by the T10 protocol, is generally applicable to any
sector sizes within the scope of the present invention. For
example, some modern storage devices comprise 4 KB data
sectors and a 64 byte data integrity field. Therefore, the term
“sector” is merely intended to indicate a portion of the storage
availability on a storage device within the defined storage
protocols and is not intended to be limited to any of the
disclosed examples. Additionally, sector may be used to refer
to a portion of a logical drive, i.e. a virtual drive created from
a plurality of physical hard drives linked together in a RAID
configuration.

In this embodiment, the storage device 114 is formatted
such that each sector 200 comprises 520 bytes (4160 bits) in
accordance with the American National Standards Institute’s
(ANSI) T10-DIF (Data Integrity Field) specification format.
The T10-DIF format specifies data to be written in blocks or
sectors of 520 bytes. The 8 additional bytes in the data integ-
rity field provide additional protection information (PI), some
of which comprises a checksum that is stored on the storage
device together with the data. The data integrity field is
checked on every read and/or write of each sector. This
enables detection and identification of data corruption or
errors.

As set out above, the data field 202, in this embodiment, is
512 bytes (4096 bits) long and the data integrity field 204 is 8
bytes (64 bits) long. The data field 202 comprises user data
206 to be stored on the storage device 106a-j. This data may
take any suitable form and, as described with reference to
FIGS. 2 and 3, may be divided into a plurality of stripe units
spread across a plurality of storage devices 106a-j. However,
for clarity, the following description will focus on the data
stored on a single storage device 106.

In a T10-based storage device, the data integrity field 204
comprises a guard (GRD) field 208, an application (APP)
field 210 and a reference (REF) field 212. The GRD field 208
comprises 16 bits of ECC, CRC or parity data for verification
by the T10-configured hardware. In other words, sector
checksums are included in the GRD field in accordance with
the T10 standard. The format of the guard tag between initia-
tor and target is specified as a CRC using a well-defined
polynomial. The guard tag type is required to be a per-request
property, not a global setting.

US 9,225,780 B2

9

The APP field 210 comprises 16 bits reserved for applica-
tion specific data. In practice, this field is rarely used.

The REF field 212 comprises 32 bits of location informa-
tion that enables the T10 hardware to prevent misdirected
writes. In other words, the physical identity for the address of
each sector is included in the REF field of that sector in
accordance with the T10 standard.

The checksums in the GRD field 208 and REF field 212 are
processed by the T10 compliant HBA 120. These CRC cal-
culations are relatively processor-intensive, so by performing
these tasks in specialist T10 hardware (the HBA 120), the
central processing units (CPUs) of the server 104 are freed
from the task of checksum calculation and processing.

Since, in general, the number of hosts 102 will be signifi-
cantly greater than the number of servers, in conventional
Lustre file systems the server computational resources are the
limiting factor is calculating and verifying data checksums.

Therefore, an aspect of the present invention is that the
client-side application or OS is required to calculate the nec-
essary GRD checksums under the T10 protocol. These check-
sums can then be analysed by the specialist T10 hardware in
the HBA 120 on the server 104. This frees the server CPUs
from having to perform these calculations.

The operation of a T10-DIF/DIX compliant distributed
network system will now be described with reference to
FIGS. 5 and 6. FIG. 5 shows a flow diagram of the method for
writing data to the OST 112 with end to end data integrity.
FIG. 6 shows a flow diagram of the method for reading data
from the OST 112.

The steps of writing data to the OST 112 will be discussed
with reference to FIG. 6.

Step 300: Write Request

At step 300, a client application running on host 102 gen-
erates a write request for a specific volume (e.g. OST 112) to
which it has been assigned access rights. A byte stream is
generated.

Step 302: Format Data into Sectors

At step 302, the byte stream is formatted by a host-side
operating system (OS) into 512 byte data sectors. The method
proceeds to step 304.

Step 304: Calculate GRD

The client application computes the GRD checksum 208
for each sector. This is in the form of a CRC checksum and is
done utilising client-side processor resources.

Alternatively, the GRD checksum 208 could be calculated
by the client-side OS. The method proceeds to step 306.
Step 306: Recompute GRD

At step 306, the GRD for each sector is recomputed by the
client-side application or OS after a kernel copy has been
made. The recalculated GRD values are then saved in a pri-
vate page area.

Note that this step is optional and costs additional client-
side processor resources. However, inclusion of this step
enables identification of the source of a corruption. There-
fore, it may be useful to include this step in high-risk systems.

The method proceeds to step 308.

Step 308: Add GRD to bulk 1O descriptor

At step 308, the calculated GRD information generated in
steps 304 and/or 306 is then added into a bulk I/O descriptor.
In other words, the generated GRD Pl is placed in a separate
bulk I/O buffer which is Y4 of the total data size and a
descriptor is added to the outbound RPC.

Step 310: Send Write Request

The request is sent via communication network 112 to the
host ports (not shown) of the server 104. The write command
is then stored in a local cache (not shown) forming part of the

30

35

40

45

55

10
HBA 120 of the server 104. The write request is sent in the
format of a standard Lustre RPC (1 MB)

The method proceeds to step 312.

Step 312: OST Receives Bulk [/O

At step 312, the OSS 104 receives the write request in the
form of a bulk I/O. At this stage, there is no need for the OSS
104 to recompute the GRD values prior to replying to the
request from the host 102 as would be required with conven-
tional arrangements. This reduces the load on the server
CPUs.

In general, the OSS 104 delays a reply to the host until the
write returns successfully from the disk I/O subsystem. This
is in case an error is detected.

The method then proceeds to step 314.

Step 314: OST Maps PI

At step 314, the OST 112 maps the PI for each sector
received in the write request. Whilst the above steps have only
referred to the GRD field 208, all 8 bits of PI under the T10
protocol are required to be transferred between the host 102
and the OST 112 otherwise memory copies would be required
to interleave the data.

The method proceeds to step 316.

Step 316: OST Passes PI to MDRAID Layer

Once the PI for each sector has been mapped in step 314, it
is passed to the MD RAID layer. At this point, the MDRAID
layer maps the REF field 212 of each sector and calculates any
required RAID parity.

The method proceeds to step 318.

Step 318: HBA Obtains SG and PI

At step 318, the HBA 120 obtains the scatter gather (SG)
lists of data and corresponding protection information. The
HBA 120 requires dual SG lists for data and P1 to achieve this.
Step 320: HBA Recalculates GRD

At step 320, the HBA 120 recalculates the GRD sector
checksums. Since this is done using specialist T10-compliant
hardware (in this example, the HBA 120), the computational
demands on the server processors is minimal.

The GRD is also checked at this point. If the GRD is
verified as accurate, the method proceeds directly to step 322.
However, if an error is returned, this is reported to the last
GRD recompute step. This may be step 304 or 306 on the
client side. These steps are then repeated until the error is
corrected.

Step 322: Storage Device Verifies REF and GRD

At step 322, the data is written to the storage device 114
(via the RAID controller 124). At this point, the REF and
GRD fields 208, 210 are checked and verified. If they are
verified as correct, the data is written in step 324. If an error is
detected, the method returns to step 320.

Step 324: Write Data to Storage Sector

At step 324, the data has been verified from client applica-
tion through to storage device (disk) level and the data is
written to an intended sector.

FIG. 6 shows a flow diagram ofthe method for reading data
from the OST 112.

Step 400: Read Request

At step 400, a client application running on host 102 gen-
erates a read request for a specific volume (e.g. OST 112) to
which it has been assigned access rights. At this point, the host
102 sets up data and PI buffers and then a bulk I/O request is
sent.

The method proceeds to step 402.

Step 402: OST Sets Up Buffers

Once the read request generated in step 400 is received by
the OST 104, corresponding data and PI buffers are generated
thereon.

The method proceeds to step 404.

US 9,225,780 B2

11

Step 404: MDRAID Requests Data and Parity Blocks

Atstep 404, the MDRAID layer requests from the OST 112
the required data and associated parity blocks.

The method proceeds to step 406.

Step 406: Verify PI

In step 406, the storage device 114 verifies the GRD and
REF fields of the requested data sectors. The data, once veri-
fied, is then sent to the HBA 120.

The method proceeds to step 408.

Step 408: HBA Maps Data and Verifies GRD

Atstep 408 the HBA 120 maps the data and PI to respective
buffers and verifies the GRD field 208 of the PI.

The method proceeds to step 410.

Step 410: MDRAID Verifies Parity

At step 410, the parity of the retrieved data sectors is
verified. If an error is detected, the data is reconstructed. If
necessary, once the data has been reconstructed, the method
proceeds to step 412.

Step 412: OST Sends Data

At step 412, the now-verified data is sent to the host 102.
The method proceeds to step 414.

Step 414: Host Verifies GRD

At step 414, the kernel on the host 102 verifies the GRD
field 208 of the received data. The method proceeds to step
416.

Step 416: Host Verifies GRD

As an optional step, the client application and/or OS on the
host 102 may also verify the GRD data 208. The method
proceeds to step 418.

Step 418: Read Data

The data has now been received successfully by the host
102 and can be utilised as required.

Variations of the above embodiments will be apparent to
the skilled person. The precise configuration of hardware and
software components may difter and still fall within the scope
of the present invention.

For example, the present invention has been described with
reference to controllers in hardware. However, the controllers
and/or the invention may be implemented in software. This
can be done with a dedicated core in a multi-core system.

Whilst the above examples have been illustrated with
respect to T10-capable hardware such as a T10 DIF or T10
DIX compliant HBA, other arrangements are possible. For
example, T10-capable hardware such as T10-compliant hard
drives may be used.

Additionally, whilst the present embodiment relates to
arrangements operating predominantly in off-host firmware
or software, an on-host arrangement could be used.

Further, alternative ECC methods could be used. The
skilled person would be readily aware of variations which fall
within the scope of the appended claims.

Embodiments of the present invention have been described
with particular reference to the examples illustrated. While
specific examples are shown in the drawings and are herein
described in detail, it should be understood, however, that the
drawings and detailed description are not intended to limit the
invention to the particular form disclosed. It will be appreci-
ated that variations and modifications may be made to the
examples described within the scope of the present invention.

The invention claimed is:

1. A method of writing data to a distributed file system
comprising at least one client, at least one server and at least
one storage resource target, the method comprising:

generating, on the client, a write request comprising a byte

stream to be written to the storage resource target;
formatting, on the client, the byte stream into a sequence of
fixed-length sectors in accordance with a T10 based

10

15

20

25

30

35

40

45

50

55

60

12

protocol, the sectors each comprising a data field com-
prising data and a protection information field compris-
ing protection information including a guard field, an
application field and a reference field;

computing, on the client, checksum data for the guard field

of each sector on a per-sector basis and storing the
checksum data in a client kernel,

sending, across a network, the data from the data field of

each sector and the protection information from the pro-
tection information field of each sector to the server, the
protection information including the checksum data for
each sector calculated on a per-sector basis and stored in
the client kernel;

verifying the data sent across the network between the

client and the server by generating, for each sector, a first
recalculated set of the checksum data for the guard field
of each sector in T10 capable hardware on the server
such that no checksum calculations are performed on a
CPU of the server and using the T10 capable hardware to
compare the first recalculated set of the checksum data
to the checksum data sent across the network from the
client;

transferring, from the server to the storage resource target,

the data from the data field of each sector and the pro-
tection information from the protection information
field of each sector previously sent across the network to
the server responsive to the first recalculated set of the
checksum data matching the checksum data sent across
the network from the client;

verifying, on the storage resource target, the checksum data

for the guard field of each sector by generating, for each
sector, a second recalculated set of the checksum data for
the guard field of each sector and comparing the second
recalculated set of the checksum data to the checksum
data sent from the server to the storage resource target;
and

storing the data from the data field of each sector on the

storage resource target responsive to the second recal-
culated set of the checksum data matching the checksum
data sent from the server to the storage resource target.

2. The method of claim 1, wherein the formatting step
comprises using the client to format the byte stream into
sectors comprising 512 bytes of data and 8 bytes of protection
information.

3. The method of claim 2, further comprising:

formatting, for each sector, the data from the data field and

the protection information from the protection informa-
tion field into a remote procedure call (RPC) format.

4. The method of claim 3, wherein the RPC format utilizes
an RPC buffer.

5. The method of claim 1, wherein the T10 capable hard-
ware comprises a T10-DIF or T10-DIX compliant host bus
adapter.

6. The method of claim 1, wherein the client is configured
to utilize a Lustre based parallel distributed file system.

7. The method of claim 1, further comprising subsequently
returning the data previously stored on the storage resource
target to the client responsive to a read command issued by the
client, by steps comprising:

transferring, from the storage resource target, the data from

the data field of each sector and the protection informa-
tion from the protection information field of each sector
to the server;

verifying, on the server using the T10 capable hardware,

the checksum data for the guard field of each sector by
generating, for each sector, a third recalculated set of the
checksum data for the guard field of each sector and

US 9,225,780 B2

13

comparing the third recalculated set of the checksum
data to the checksum data sent from the storage resource
target to the server;

transferring, from the server to the client across the net-
work, the data from the data field of each sector and the
protection information from the protection information
field of each sector previously transferred from the stor-
age resource target to the server responsive to the third
recalculated set of the checksum data matching the
checksum data transferred from the storage resource
target;

retrieving, by the client, the checksum data stored in the
client kernel; and

comparing, for each sector, the checksum data retrieved
from the client kernel to the checksum data transferred
from the server to the client across the network.

8. A method of reading data from a distributed file system
comprising at least one client, at least one server and at least
one storage resource target, the method comprising:

executing, from the client, a read request for reading of data
from at least one data sector of a sequence of fixed-
length data sectors, each data sector comprising a data
field and a protection information field, the protection
information field comprising protection information
including a guard field, checksum data stored in the
guard field, an application field and a reference field;

transferring, from the storage resource target, the data from
the data field of each sector and the protection informa-
tion from the protection information field of each sector
to the server;

verifying, on the server using T10 capable hardware, the
checksum data for the guard field of each sector by
generating, for each sector, a first recalculated set of the
checksum data for the guard field of each sector and
comparing the first recalculated set of the checksum data
to the checksum data sent from the storage resource
target to the server;

transferring, from the server to the client across the net-
work, the data from the data field of each sector and the
protection information from the protection information
field of each sector previously transferred from the stor-
age resource target to the server responsive to the first
recalculated set of the checksum data matching the
checksum data transferred from the storage resource
target;

retrieving, by the client, previously stored checksum data
in a client kernel; and

comparing, for each sector, the checksum data retrieved
from the client kernel to the checksum data transferred
from the server to the client across the network.

9. The method of claim 8, further comprising formatting
the byte stream into sectors comprising 512 bytes of data and
8 bytes of protection information in accordance with a T10-
DIF and/or T10-DIX protocol.

10. The method of claim 9 further comprising:

sending the data and protection information in a remote
procedure call (RPC) format.

11. The method of claim 10, wherein the RPC format

utilizes an RPC bufter of 1 Megabyte (MB) in size.

12. The method of claim 8, wherein the T10 capable hard-
ware of the server comprises a host bus adapter.

13. An apparatus comprising:

a client device of a distributed file system configured to
generate a write request comprising a byte stream for-
matted into a sequence of fixed-length sectors in accor-
dance with a storage system interface, the sectors each
comprising a data field comprising data and a protection

10

15

20

25

30

35

40

45

50

55

60

65

14

information field comprising protection information
including a guard field, an application field and a refer-
ence field, the client device further configured to gener-
ate checksum data for the guard field for each sector on
a per-sector basis;

a server device coupled to the client device across a net-
work, the client device further configured to send, across
the network, the data from the data field of each sector
and the protection information from the protection infor-
mation field of each sector to the server, the protection
information including the checksum data for each sector
generated on a per-sector basis, the server configured to
generate, via storage system interface capable hardware
of'the server, a first recalculated set of the checksum data
and to compare the first recalculated set of the checksum
data to the checksum data received from the client; and

a storage resource target coupled to the server, the server
further configured to transfer to the storage resource
target the data from the data field of each sector and the
protection information from the protection information
field of each sector previously sent across the network to
the server responsive to the first recalculated set of the
checksum data matching the checksum data sent across
the network from the client, the storage resource target
configured to generate, for each sector, a second recal-
culated set of the checksum data for the guard field of
each sector, to compare the second recalculated set of the
checksum data to the checksum data sent from the server
to the storage resource target, and to store the data from
the data field of each sector on the storage resource target
responsive to the second recalculated set of the check-
sum data matching the checksum data sent from the
server to the storage resource target.

14. The apparatus of claim 13, wherein the client formats
the byte stream into sectors each comprising 512 bytes of data
and 8 bytes of protection information.

15. The apparatus of claim 14, wherein the client further
formats the sectors into a remote procedure call (RPC) format
of selected size.

16. The apparatus of claim 15, wherein the selected size
comprises 1 MB.

17. The apparatus of claim 13, wherein the storage system
interface capable hardware comprises a T10-DIF or T10-DIX
compliant host bus adapter which operates independently of a
server processor to generate the first reconstructed set of the
checksum data.

18. The apparatus of claim 13, wherein the client is con-
figured to utilize parallel distributed file system.

19. The apparatus of claim 13, wherein the client is further
configured to store the checksum data generated for the guard
field for each sector on a per-sector basis in a local client
kernel.

20. The apparatus of claim 19, wherein the client is further
configured to issue a read command to subsequently retrieve
the data previously stored by the storage resource target, and
responsive to the read command:

the storage resource target is further configured to transfer
to the server the data from the data field of each sector
and the protection information from the protection infor-
mation field of each sector to the server;

the server is further configured to use the storage system
interface capable hardware to generate a third recalcu-
lated set of the checksum data for the guard field of each
sector, to compare the third recalculated set of the check-
sum data to the checksum data sent from the storage
resource target to the server, and to transfer across the
network to the client the data from the data field of each

US 9,225,780 B2

15

sector and the protection information from the protec-
tion information field of each sector previously trans-
ferred from the storage resource target to the server
responsive to the third recalculated set of the checksum
data matching the checksum data transferred from the
storage resource target; and

the client is further configured to retrieve the checksum
data stored in the client kernel and to compare, for each
sector, the checksum data retrieved from the client ker-
nel to the checksum data transferred from the server to
the client across the network.

#* #* #* #* #*

10

16

